Course Contents

- 1. Give details of the course, on the following lines:
 - a.Course CodeTEE-823b.Title:Solar Thermal Power Systemsc.Credit Hours3d.ObjectivesAs already mentioned under section
 - 3.
 - e. Outcomes

2. This course will develop in students the understanding of advance processes of solar thermal power generation. The course will provide in-depth knowledge of solar field sizing, designing of high temperature CSP systems and integration of TES systems. Students will be able to analyze the economic viability of power plants as well as consider the environmental impacts of solar thermal power plants.

f.	Contents with suggested contact hours
----	---------------------------------------

No.	Торіс	Text Book	Contac
	S		t
			Hours
1	Solar Thermal Power Systems	LS, DB, GKK	4
	Global scenario and solar potential in Pakistan		
	Solar thermal power technologies		
	Solar thermal power plant layout (Solar field		
	block, Thermal block, Power block)		
2	Solar Radiations	DB, LS, CN	5
	Direction of Beam Radiation, DNI		
	Absorptance, emittance, reflectance		
	Solar tracking		
	Shading		
	Optic & Geometric concentration ratios		

3	Parabolic-Trough Collector (PTC)	CN, LS, DB	8
	 PTC Concentrator, optical losses 		
	 PTC receivers, Thermal losses 		
	Heat Transfer Fluid		
	Solar field sizing		
	 Compound Parabolic Collectors (CPC) 		
	 Case Study: PTC plant designing 		
4	Central Receiver Tower Systems	CN, LS, DB	8
	 Heliostats (Reflectivity, Tracking mode, 		
	Optical losses)		
	 Tower receivers w.r.t phase 		
	Tower receiver designs		
5	Linear Fresnel Reflectors (LFR)	CN, LS, DB	4
	Fresnel reflectors		
	 LFR receivers, Thermal efficiency and heat 		
	losses		
	 Optical designing of reflectors 		
6	Parabolic Dish System	CN, LS, DB	3
	 Parabolic dish concentrator 		
	Dish tracking		
	 Thermodynamics of dish Sterling engines 		
7	Thermal Energy Storage (TES) system	DB, LS	4
	 Sensible, Latent and Thermochemical heat 		
	storage		
	 Designing of TES systems 		
	 TES integration in CSP power plant 		
8	Thermal Power Block	SD, EW	3
	Rankine cycle		
	Organic Rankine Cycle (ORC)		
	Steam turbine		

9	Economics and Environmental Assessments	DB, LS, SK	6
	of Solar Thermal Power Systems		
	 Feasibility and Economic analysis 		
	Environmental impacts		
	General risks/hazards in solar thermal		
	power systems		
	Total		45

 g. Details of lab work, workshops practice (if applicable). No practical lab work is required; however, software such as RET Screen/SAM, ASAP and T*SOL will be required for designing of CSP systems and economical assessment.

h. Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1	Concentrating Solar	Keith Lovegrove	LS	Text
	Power Technology:	and Wes Stein		
	Principles,			
	developments and			
	applications			
2	Solar Engineering of	J. A. Duffie, and W.	DB	Referenc
	Thermal Processes,	A. Beckman		е
3	Concentrated Solar	Christopher Newton	CN	Referenc
	Thermal			е
	Energy			
4	Principles of Solar	Y. Goswami, F.	GKK	Referenc
	Engineering	Kreith and J. F.		е
		Kreider		
5	Solar Energy Engineering:	Soteris A. Kalogirou.	SK	Referenc
	Processes and Systems			е
6	Thermal Power	De Souza, Gilberto	SD	Referenc
	Plant Performance	Francisco Martha		е

	Analysis			
7	Steam Plant Operation	Everett	EW	Referenc
		Woodruff,		е
		Herbert		
		Lammers		